Федеральное агентство научных организаций

Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ХИМИИ И ТЕХНОЛОГИИ РЕДКИХ ЭЛЕМЕНТОВ И МИНЕРАЛЬНОГО СЫРЬЯ им. И.В. Тананаева КОЛЬСКОГО НАУЧНОГО ЦЕНТРА РОССИЙСКОЙ АКАДЕМИИ НАУК (ИХТРЭМС КНЦ РАН)

Аспирантура

УТВЕРЖДАЮ

Вр.и.о директора института,

академик

В. Т. Калинников

« 3 = 9 2 was 19 d 20145

Программа утверждена на заседании Ученого совета ИХТРЭМС КНЦ РАН Протокол № 7 «23» октября 2014 г

РАБОЧАЯ ПРОГРАММА

по дисциплине

«Современные методы исследования строения и свойств неорганических веществ»

для подготовки научно-педагогических кадров в аспирантуре по направлениям подготовки высшей квалификации:

04.06.01 Химические науки (профиль направления 02.00.01 - Неорганическая химия), 18.06.01 Химическая технология (профиль направления 05.17.01 - Технология неорганических веществ),

22.06.01 Технологии материалов (профиль направления 05.16.02 - Металлургия черных цветных и редких металлов).

Уровень – подготовка кадров высшей квалификации. Квалификация выпускника – Исследователь. Преподаватель-исследователь. Форма обучения – очная. Срок освоения – 4 года. Разработчик – ИХТРЭМС КНЦ РАН

> Апатиты 2014 г.

Распределение учебного времени дисциплины Общая трудоемкость дисциплины - 3 зачетных единицы, 108 часа

Dyggy yggogyog gorpywy gogy	Номер семестра	Всего
Виды учебной нагрузки, часы	2	часов
Лекции	12	12
Практические занятия	8	8
Самостоятельная работа	84	84
Всего часов по дисциплине	108	108
Формы контроля, количество		
Зачет	1	1

Пояснительная записка

Дисциплина «Современные методы исследования строения и свойств неорганических веществ» является обязательной дисциплиной вариативной части блока 1 основной профессиональной образовательной программы высшего образования по направлениям подготовки научно-педагогических кадров в аспирантуре 04.06.01 Химические науки (профиль направления 02.00.01 - Неорганическая химия), 18.06.01 Химические технологии (профиль направления 05.17.01 - Технология неорганических веществ), 22.06.01 Технологии материалов (профиль направления 05.16.02 – Металлургия черных, цветных и редких металлов).

Рабочая программа составлена на основании паспортов научных специальностей: «02.00.01- Неорганическая химия», «05.17.01 — Технология неорганических веществ», «05.16.02 - Металлургия черных цветных и редких металлов», в соответствии с Программой-минимум кандидатского экзамена по специальности Неорганическая химия (02.00.01), Технология неорганических веществ (05.17.01), Металлургия черных цветных и редких металлов (05.16.02) по техническим наукам, утвержденной приказом Министерства образования и науки РФ № 274 от 08.10.2007 г.; согласно учебного плана ИХТРЭМС КНЦ РАН по основной образовательной программе аспирантской подготовки; в соответствии с Федеральным законом Российской Федерации от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» и Федеральными государственными образовательными стандартами высшего образования (Уровень высшего образования «Подготовка кадров высшей квалификации»), направления подготовки «04.06.01-«18.06.01- Химическая технология». Химические «22.06.01- Технологии материалов», утвержденные приказом Министерства образования и науки Российской Федерации 30 июля 2014 г., № 869, 883, 888.

1. Цели и задачи освоения дисциплины:

В настоящее время исследования состава и строения веществ невозможны без использования современных физико-химических и физических методов, обеспечивающих получение достоверной информации о составе и свойствах веществ, позволяющие реализовать современные требования к качеству, глубине и диапазону анализа. Использование этих методов позволяет успешно решать задачи разделения сложных многокомпонентных смесей, определять их качественный и количественный состав, а также природу отдельных компонентов, структуру вещества.

Целью изучения дисциплины «Современные методы исследования строения и свойств неорганических веществ» является изучение и, при необходимости, освоение современных методов исследования состава, структуры и физико-химических свойств неорганических веществ, материалов и продуктов. В первую очередь – ознакомление и изучение теоретических и методологических основ современных физико-химических методов исследования веществ и материалов, применяемых в научных исследованиях, а также конструктивных особенностей современных приборов, для проведения таких исследований, повышение профессиональных компетенций в области проведения физикохимического Дисциплина «Современные методы физико-химических анализа. исследований» знакомит аспирантов и соискателей с системой научных знаний и современным техническим парком приборов, применяемых для исследования в химии. Эти знания могут быть использованы специалистами-химиками в их деятельности в различных научных, технологических и учебных организациях.

Задачи освоения дисциплины — ознакомление с теоретическими основами и приборным парком для формирования навыков самостоятельной научно-исследовательской и педагогической деятельности, в том числе:

- формирование базовых знаний и представлений о фундаментальных законах и основных методах исследования структуры веществ и физико-химических свойств материалов. Обобщить и систематизировать знания, включающие фундаментальные законы, лежащие в основе физико-химического анализа.
- рассмотрение основных задач физико-химического анализа, областей и границ применимости методов;
- рассмотрение теоретических основ хроматографических, спектральных (атомно-абсорбционного, атомно-эмиссионного, атомно-флуоресцентного), массспектрометрического и др., методов анализа неорганических материалов;
- изучение математической формы основных уравнений и экспериментальных закономерностей, лежащих в основе физико-химического анализа, особенности их использования в различных методах;
- рассмотрение областей применимости моделей, применяемых в физико-химических исследованиях, способов вычисления физико-химических величин, характеризующих явления; обеспечить овладение методологией физико-химических исследований;
- рассмотрение основных приемов экспериментального и теоретического исследования физико-химических свойств, использование этих методов в современных технологиях;
- практическое ознакомление с работой современных приборов-атомно-абсорбционных спектрометров, атомно-эмиссионных спектрометров, ИСП-масс-спектрометров, хромато-масс-спектрометров и т.д.;
- получение навыков в интерпретации результатов исследований, проведенных на современных приборах физико-химического анализа.

Рабочая программа по дисциплине «Современные методы физико-химических исследований» является частью основной профессиональной образовательной программы послевузовского профессионального образования (аспирантура) направленности 02.00.01-Неорганическая химия, 05.17.01 — Технология неорганических веществ, 05.16.02 - Металлургия черных цветных и редких металлов.

2. Требования к уровню подготовки аспирантов в рамках данной дисциплины.

Аспиранты, завершившие изучение данной дисциплины, должны представление о принципиальных основах, практических возможностях и ограничениях важнейших физико-химических методов исследования, об аппаратурном оснащении и условиях проведения эксперимента при осуществлении физико-химических исследований различными методами, об интерпретации экспериментальных данных и об основных принципиальных отличиях различных физико-химических методов и их классификации, знать базовую терминологию, относящуюся к физико-химическим методам исследования, классификацию методов; основные понятия и законы, лежащие в основе различных методов; уметь продемонстрировать связь между различными физико-химическими методами исследования, структурой и свойствами веществ; осуществить выбор соответствующего физико-химического метода исследования в зависимости от структуры вещества и поставленной задачи; использовать закономерности физико-химических процессов физико-химические методы исследования при выполнении исследовательских работ и интерпретации экспериментальных данных.

3. Место дисциплины в структуре основной профессиональной образовательной программы послевузовского профессионального образования (ООП)

Дисциплина «Современные методы физико-химических исследований» входит в раздел обязательных дисциплин вариативной части блока 1 (шифр Б1.В.ОД.1).

Входные требования к обучающимся: знание общей, физической, неорганической и органической химии, базовые знания по аналитической химии и физико-химическим методам анализа, владение навыками работы на компьютере, т.е. наличие у аспирантов знаний по химии в объеме программы высшего профессионального образования.

Знания и навыки, полученные аспирантами при изучении данного курса, необходимы при подготовке и написании диссертации по специальности «02.00.01-Неорганическая химия», «05.17.01 — Технология неорганических веществ», «05.16.02 - Металлургия черных цветных и редких металлов».

3.1. Результаты, формируемые по итогам изучения дисциплины

Процесс освоения дисциплины направлен на формирование следующих компетенций:

Общепрофессиональные компетенции (ОПК) для направления 04.6.01:

- способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1).

Общепрофессиональные компетенции (ОПК) для направления 18.6.01:

- способность и готовность к разработке новых методов исследования и их применение в самостоятельной научно-исследовательской деятельности в области химической технологии с учетом правил соблюдения авторских прав (ОПК-4).

Общепрофессиональные компетенции (ОПК) для направления 22.6.01:

- способность и готовность выполнять нормативные требования, обеспечивающие безопасность производственной и эксплуатационной деятельности (ОПК-4);
- способность и готовность использовать на практике интегрированные знания естественнонаучных, общих профессионально-ориентирующих и специальных дисциплин для понимания проблем развития материаловедения, умение выдвигать и реализовывать на практике новые высокоэффективные технологии (ОПК-5);
- способность и готовность вести авторский надзор при изготовлении, монтаже, наладке, испытаниях и сдаче в эксплуатацию выпускаемых материалов и изделий (ОПК-18).

Профессиональные компетенции для направления 04.6.01:

- способность и умение владеть физико-химическими методами исследования применительно к исследуемым материалам (ПК-3);
- способность и готовность к изучению методов неорганической химии, включая синтез неорганических соединений различными способами, изучение их строения, химических превращений и свойств физическими и физико-химическими методами (ПК-4);
- способность и готовность к моделированию процессов, протекающих в окружающей среде с участием объектов исследования неорганической химии (ПК-6).

Профессиональные компетенции для направления 18.6.01:

- владение культурой научного исследования в области химических технологий, в том числе с использованием новейших информационно-коммуникационных технологий (ОПК-2):
- способность и готовность к анализу, обобщению и публичному представлению результатов выполненных научных исследований (ОПК-3).

Профессиональные компетенции для направления 22.06.01:

- -способность и готовность к теоретической и практической разработке методов оценки качества и улучшения свойств сырья для производства цветных и редких металлов (ПК-1);
- -способность и готовность к разработке новых подходов и к созданию новых принципов и методов, позволяющих существенно снизить расход материальных и энергетических ресурсов, заметно снизить давление на окружающую среду за счет уменьшения выбросов в атмосферу и водоемы и снижения выхода и степени токсичности производственных отходов (ПК-5).

4. Рекомендуемое количество часов на освоение программы дисциплины.

Программа рассчитана на преимущественно самостоятельное изучение аспирантом дисциплины. Количество времени на изучение дисциплины в соответствии с Федеральными государственными требованиями к структуре основной профессиональной образовательной программы послевузовского профессионального образования (аспирантуры) согласно Приказу Минобрнауки РФ №1365 от 16 марта 2011 г. складываются за счет времени, отведенного на изучение обязательной дисциплины отрасли науки и научной специальности ОД.А.03, факультативных дисциплин ФД.А.00, а также практики П.А.00.

Максимальная учебная нагрузка аспиранта - 108 часов, в том числе: обязательной аудиторной учебной нагрузки аспиранта - 36 часов; самостоятельной работы аспиранта - 72 часа.

5. Структура и содержание дисциплины

Содержание учебной дисциплины (модуля) Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

Содержание дисциплины

Таблица 1

№	Содержание разделов (модулей),		бъем рабо		
п/п	тем дисциплины	в часах		1	Примечания
	тем диециплины	Лекции	Семинар	Самост.	
1	2	3		4	5
	Физико-химиче	ские мет	оды		
	Ведение. Современное состояние				
1	аналитической химии и физико-				
	химических методов как ее				
	составляющих. Приборная база.	1		2	
	Преимущества и недостатки приборных	1		2	
	методов. Анализ как необходимый				
	инструмент для обеспечения научно-				
	исследовательских работ.				
	Характеристика и классификация				
	физико-химических методов анализа.				
2	Предел	1		2	
	определения и обнаружения,				
	погрешность методов.				
	Спектроскопические методы анализа:				
	общая характеристика и классификация.				
	Спектр электромагнитного излучения,				
	спектроскопические методы в гамма-,				
	рентгеновском, оптическом,				
3	микроволновом и радиочастотном	1		4	
	диапазонах.				
	Место и роль спектроскопических				
	методов в аналитической химии и				
	химической анализе.				
	Классификация спектроскопических				

№ π/π	тем дисциплины		бъем рабо в часах	Примечания	
			Семинар	Самост.	
1	2	3		4	5
	Физико-химиче	ские мет	оды		
	методов: -по природе частиц, взаимодействующих с излучением (атомные, молекулярные); -характеру процесса; - диапазону электромагнитного излучения.				
	Методы атомной оптической				
4	спектроскопии Атомно- эмиссионный метод: Принципиальная схема атомно- эмиссионного спектрометра. Источники автомизации и возбуждения (атомизаторы), физические и химические процессы в атомизаторах. Спектральные и физико-химические помехи, способы их устранения. Особенности подготовки пробы и ее введения в атомизаторы различного типа. Качественный и количественный анализ атомно-эмиссионным методом. Метрологические характеристики и аналитические возможности.	1		4	
5	Атомно-абсорбционный метод. Принципиальная схема атомно-абсорбционного спектрометра. Атомизаторы, источники излучения (лампы с полым катодом, источники сплошного спектра, лазеры), их характеристики. Спектральные и физико-химические помехи, способы их устранения. Возможности, достоинства и недостатки метода, селективность, сравнение с атомно-эмиссионным методом. Метрологические характеристики. Применение.	1		4	
6	Атомно-флуоресцентный метод, особенности.		1	4	
7	Рентгеновская фотоэлектронная спектроскопия (РФЭС), метод ЭСХА и др.		1	2	
8	Оже-электронная спектроскопия.		1	4	
9	Масс-спектрометрия (МС): классификация. Методы ионизации, методы разделения и регистрации ионов. Основные законы фрагментации соединений. Подходы к	1	1	4	

No	Содержание разделов (модулей),		бъем рабо	ТЫ	Примечания
Π/Π	тем дисциплины	в ча Лекции Семи			
			Семинар		
1	2	3		4	5
	Физико-химиче	ские мет	оды		
	интерпретации масс-спектров. Масс-				
	спектрометрия высокого разрешения.				
	1Тандемная масс-спектрометрия.				
	Электрораспыление, матрично				
	активированная лазерная десорбционная				
	ионизация. МС с индуктивно-связанной				
	плазмой. Хромато-масс-спектроскопия.				
	Идентификация и определение				
	неорганических и органических веществ,				
	элементный и изотопный анализ.				
	Использование баз данных и библиотек				
	масс-спектров для структурного анализа.				
	Использование масс-спектрометрии в				
	экологии.				
10	Методы исследования поверхности: LA-ICP-MS, SIMS, TIMS, СЭМ и др.			4	
	Хроматографический анализ.				
	Классификация методов. Способы				
11	осуществления качественного			4	
	хроматографического анализа.				
	Идентификация веществ.				
	Пробоотбор и пробоподготовка.				
	Представительность пробы, отбор проб				
	гомогенного и гетерогенного состава,				
	способы получения средней пробы.				
	Основные способы перевода пробы в				
12	форму, необходимую для данного вида			4	
12	анализа: растворение в различных			+	
	средах; спекание, сплавление,				
	разложение под действием высоких				
	температур, давления, высокочастотного				
	разряда; комбинирование различных				
	приемов.				
	Всего часовв на раздел	6	4	42	

№	Содержание	разделов	(модулей),	Объем работы			Примечания
Π/Π	тем дисциплин	Ы		в часах			
				Лекции	Семин	Самост.	
					ары		
1		2		3	4		6
Физические методы							

1.	Классификация конденсированных сред. Аморфное состояние. Жидкое состояние. Жидкие кристаллы. Принципы строения твердых тел. Ближний и дальний порядок. Кристаллическое состояние и его классификация. Полиморфизм кристаллов. Элементы кристаллографии.	1	2	
2.	Кристаллическая решетка. Понятие элементарной ячейки. Правила выбора элементарной ячейки, расчетные формулы. Плоскости решетки. Индексы Миллера. Межплоскостные расстояния. Базис решетки. Ячейка Вигнера-Зейтца. Сингония кристаллов. Кристаллографические направления, плоскости и зоны. Решетки Бравэ.	1	2	
3.	Симметрия кристаллов. Точечные и пространственные группы симметрии. Обратная решетка. Принцип плотной упаковки атомов. Анализ структуры наиболее простых кристаллических структур.	1	2	
4.	Общая характеристика и классификация физических методов исследования структуры твердых веществ и материалов. Прямая и обратная задача методов. Динамические и статические методы исследования структуры твердых веществ. Значение физических методов для химии, физики, физического материаловедения.	1	2	
5.	Рентгеноструктурный анализ. Рентгеновское излучение, способы его генерации. Взаимодействие рентгеновского излучения с веществом. Принцип рентгеновской дифракции. Основы техники рентгеновского эксперимента. Устройства рентгеновской техники. Источники излучения, методы регистрации. Рентгеновские камеры, устройство гониометров на отражение и пропускание. Рентгеновские монохроматоры.	1	2	

6.	Рентгеновские экспериментальные методы определения структуры кристаллов: метод Лауэ, метод вращения монокристаллов, метод порошка (Дебая). Дифракционная картина порошка. Индексы (HKL) отражения. Возможности метода порошка.	1		2	
7.	Полнопрофильный рентгеноструктурный анализ. Характеристики дифракционного пика на рентгенограмме. Функции профиля, полуширина, асимметрия. Рентгеновский фазовый анализ (РФА). Качественный РФА. Базы структурных и дифракционных данных. Количественный РФА. Основные методы и модели построения структуры. Уточнение модели структуры и состава вещества.	1		2	
8.	Спектроскопия рассеяния нейтронов.		1	2	
9.	Неупругое рассеяние нейтронов. Колебательная спектроскопия молекул.		1	2	
	Методы колебательной спектроскопии. Комбинационное рассеяние (эффект Рамана) и инфракрасное поглощение. Общие понятия. Теоретические основы колебательной спектроскопии. Основы классической и квантовомеханической теории колебательных спектров.				
10.	Симметрия молекул. Нормальные колебания атомов. Симметрия молекул. Основы теоретико-группового анализа колебаний молекул. Резонанс Ферми. Вырожденные и невырожденные колебания.		1	2	
11.	Анализ и интерпретация колебательных спектров молекул. Определение симметрии и структуры молекул по колебательным спектрам. Характеристические частоты молекул. Формы колебаний. Изотопные эффекты. Выводы о строении молекул из сопоставления спектров комбинационного рассеяния света и инфракрасного поглощения. Правило альтернативного запрета.		1	2	

10	 	2	
<i>12</i> .	Применение колебательных спектров в	2	
	Химии. Определение силовых полей		
	молекул. Крутильные колебания		
	1 0		
	1 1		
	внутреннего вращения. Водородная		
	связь. Комплексы с водородной связью.		
	Идентификация соединений по		
	колебательным спектрам и		
	количественный анализ смесей.		
13.		6	
13.	Колебательная спектроскопия	Ü	
	кристаллов. Симметрия колебаний		
	кристаллической решетки. Элементы		
	симметрии кристаллической решетки.		
	Общая характеристика и классификация		
	колебаний кристаллической решетки.		
	Вырожденные и невырожденные		
	колебания. Продольно-поперечное (LO-		
	ТО) расщепление колебаний в полярных		
	кристаллах.		
14.	Особенности рассеяния света	2	
	кристаллами, стеклами и		
	наночастицами. Фононный спектр в		
15	дефектных кристаллах. Бозонный пик.	2	
15.	Техника колебательной спектроскопии.	2	
	Основные типы спектрометров и		
	спектрофотометров. Блок-схемы		
	спектрометров и спектрофотометров.		
	Физические и технические особенности		
	ИК и Раман-спектроскопии. Физические		
	-		
	± ''		
	рассеяния света. ИК- и Раман Фурье		
	спектрометры		
<i>16</i> .	Общие понятия об электронном	2	
	парамагнитном (ЭПР) и ядерном		
	магнитном (ЯМР) резонансах.		
	Применение ЭПР и ЯМР для		
	исследования структуры и свойств		
17	веществ. Калориметрические методы.		
<i>17</i> .	Оптические свойства молекул и	2	
	кристаллов. Оптичекая активность		
	веществ. Оптическая индикатриса.		
	Оптически одноосные и двуосные		
	кристаллы. Оптическое поглощение.		
	Коноскопический метод исследования		
1	кристаллов. Лазерная коноскопия		

20.	Всего часов на раздел	6	4	42	
	Техника электронной спектроскопии.				
	анализ и идентификация веществ.				
	электронных спектров: качественный				
	Аналитические применения				
	неорганических соединений.				
	Электронные спектры органических и				
19.	Применение электронных спектров.			2	
	переходов.				
	отбора и интенсивность электронных				
	переходы и их классификация. Правила				
	электронных состояний. Электронные				
	Общая характеристика свойств				
	и пропускания молекул и кристаллов.				
18.	Электронные спектры поглощения			2	

Таблица 2

Самостоятельная работа

	- W 0 1 0 1 1 0 1 2 1 W.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
№	Наименование и содержание	Номер и наименование
Π/Π	самостоятельной работы	разделов дисциплины
1	2	3
1.	Повторение лекционного материала, работа в лаборатории	Все темы программы
2.	Проработка учебников и учебных пособий	Все темы программы
3.	Подготовка к зачету	Все темы программы
	Итого:	

Таблица 3

Формы контроля знаний

No		Номер	Срок
П/П	Наименование формы контроля знаний	темы по	выполнения
11/11		табл. 1	
			По
	Зачет в соответствии с перечнем контрольных вопросов и программой дисциплины		окончании
1		Все темы	курса лекций
1		семестра	И
			самостоятель
			ной работы

Таблица 4 **Учебно-методическое и информационное обеспечение** дисциплины

№ п\п 1	Название учебников, учебных пособий и других источников	Авторы (под ред.) 3 а) основная	Издатель- ство 4	Год издания 5	Фактическое наличие Библиотека 6
1.	Современные методы аналитической химии	Отто М.	М.: Техносфера	2008	1
2.	Аналитическая химия, в 2-х т.	Гэри К.	М.: Бином	2009	1
3.	Аналитическая химия (аналитика) в 2-х т.	Харитонов Н.Я.	М.: Высшая школа	2008	1
4.	Физические методы исследования в химии	Пентин Ю.А., Вилков Л.В.	М.:Мир	2009	1
5.	Методы разделения и концентрирования в аналитической химии	Москвин Л.Н., Родинков О.В.	Долгопруд- ный.: Интеллект	2011	1
		б) дополнительн	ая		
6.	Современные методы аналитической химии, Т.1	Отто М.	М.: Техносфера	2003	1
7.	Современные методы аналитической химии, Т.2	Отто М.	М.: Техносфера	2004	1
8.	Аналитическая химия: проблемы и подходы, в 2-х т.	Кельнер Р. (ред. Золотов Ю.А.)	М.: Мир	2004	1
9.	Безэталонный молекулярный спектральный анализ	Грибов Л.А., Баранов В.И.	М.: УРСС	2002	1
10.	Пробоподготовка в экологическом анализе: практическое руководство	Другов Н.С.	М.: Бином	2009	1

- в) программное обеспечение стандартные текстовые и расчетные программы
- Использование ПК для статистической обработки экспериментальных результатов.
- Использование ПК для расчета функциональных (графических) зависимостей методом МНК.
- Использование ПК для визуализации полученных данных.
- **г) базы данных, информационно-справочные и поисковые системы:** каталог электронной версии ведущих аналитических журналов на русском и английском языках

Методические рекомендации по организации изучения дисциплины

В зависимости от особенности контингента обучающихся, часть занятий может быть проведена в активных и интерактивных формах.

Лекции:

$N_{0}N_{0}$	Наименование темы	Количество	
		часов	
1.			
2.			
3.			
Итого:			

В целом использование активных и интерактивных форм обучения составляет 33% от объема аудиторных занятий дисциплины.

Разработчики:			
Профессор, зав. сектором	ИХТРЭМС КНЦ РАН, аспирантура	подпись	_ Н.В.Сидоров
Доцент, с.н.с. Звание, должность	ИХТРЭМС КНЦ РАН	подпись	_ С.В. Дрогобужская

Методические рекомендации по организации изучения дисциплины

В зависимости от особенности контингента обучающихся, часть занятий может быть проведена в активных и интерактивных формах.

Лекции:

No No	Наименование темы	Количество часов
1.		
2.		
3.		
Итого:		

В целом использование активных и интерактивных форм обучения составляет 33% от объема аудиторных занятий дисциплины.

Разработчики:

Профессор, зав. сектором

ИХТРЭМС КНЦ РАН,

аспирантура

Н.В.Сидоров

Доцент, с.н.с.

ИХТРЭМС КНЦ РАН

Звание, должность

аспирантура

С.В. Дрогобужская

Лист переутверждения

Рабочая программа	переутверждена	на	2015 12	<i>2016</i> учебный	год	без
изменений и лополнений						
Секретарь Ученого « <u>30» Оклиры 2015</u> г.	совета Ваши	beba	<i>T.H.</i> ,	протокол №	17	ОТ
Рабочая программа изменений и дополнений.	переутверждена	на	/	учебный	год	без
Секретарь Ученого «»г.	совета			протокол №		ОТ
Рабочая программа изменений и дополнений.	переутверждена	на	/	учебный	год	без
Секретарь Ученого «»	совета		,	протокол №	***************************************	ОТ
Рабочая программа изменений и дополнений.	переутверждена	на	/	учебный	год	без
Секретарь Ученого «»	совета			протокол №		ОТ
Рабочая программа изменений и дополнений.	переутверждена	на	/	учебный	год	без
Секретарь Ученого «»	совета		,	протокол №		ОТ
1.						