Федеральное агентство научных организаций

Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ХИМИИ И ТЕХНОЛОГИИ РЕДКИХ ЭЛЕМЕНТОВ И МИНЕРАЛЬНОГО СЫРЬЯ ИМ. И.В. ТАНАНАЕВА КОЛЬСКОГО НАУЧНОГО ЦЕНТРА РОССИЙСКОЙ АКАДЕМИИ НАУК (ИХТРЭМС КНЦ РАН)

Аспирантура

УТВЕРЖДАЮ
Зам. директора института по научной работе

_П.Б. Громов

2014 г.

Протокол Ученого совета № 7 от 23 октября 2014 г.

РАБОЧАЯ ПРОГРАММА

по дисциплине

«Физико-химические основы металлургических процессов»

подготовки научно-педагогических кадров в аспирантуре по направлению подготовки высшей квалификации

22.06.01 Технологии материалов (профиль направления 05.16.02 – Металлургия черных, цветных и редких металлов)

Уровень – подготовка кадров высшей квалификации. Квалификация выпускника – Исследователь. Преподаватель-исследователь. Форма обучения – очная. Срок освоения – 4 года.

Распределение учебного времени дисциплины

Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов

Виды учебной нагрузки,	Номер семестра		Всего
часов	2	3	часов
Лекции	10	10	20
Практические занятия			
Лабораторные работы			
Самостоятельная работа	94	94	188
Контроль самостоятельной работы	2	2	4
Контроль	2	2	4
Всего часов по дисциплине	108	108	216

Формы контроля, количество

Виды учебной нагрузки,	Номе	Всего	
часов	2	3	часов
Зачет			

Пояснительная записка

1. Рабочая программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования «Федеральный государственный образовательный стандарт высшего образования. Уровень высшего образования «Подготовка кадров высшей квалификации». Направление подготовки 22.06.01 Технологии материалов», утвержденным приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. № 883 (далее ФГОС ВО) и рабочим учебным планом подготовки аспирантов, обучающихся по соответствующей образовательной программе (далее обучающихся) по направлению подготовки 22.06.01 Технологии материалов (профиль направления 05.16.02 – Металлургия черных, цветных и редких металлов) (далее направление подготовки).

2. Целью дисциплины является подготовка обучающихся в соответствии с квалификационной характеристикой и формирование установленных ФГОС ВО компетенций.

3. Задачи дисциплины:

- ознакомление с самыми современными электрохимическими производствами важнейших цветных, редких и благородных металлов.
- усвоение обучающимися теоретических основ электрохимических процессов в растворах и расплавах электролитов;
- практическое ознакомление с процессами электролиза;
- практическое ознакомление с современными электрохимическими производствами.

4.Требования к уровню подготовки обучающегося в рамках данной дисциплины.

Процесс изучения дисциплины «Физико-химические основы металлургических процессов» направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО:

общепрофессиональными компетенциями (далее ОПК)

- способность и готовность теоретически обосновывать и оптимизировать технологические процессы получения перспективных материалов и производство из них новых изделий с учетом последствий для общества, экономики и экологии (ОПК-1);
- способностью и готовностью использовать на практике интегрированные знания естественнонаучных, общих профессионально-ориентирующих и специальных дисциплин для понимания проблем развития материаловедения, умение выдвигать и реализовывать на практике новые высокоэффективные технологии (ОПК-5);

профессиональными компетенциями (далее ПК):

- способность и готовность к теоретической и практической разработке методов оценки качества и улучшения свойств сырья для производства цветных и редких металлов (ПК-1);
- способность и готовность к разработке новых подходов и к созданию новых гидрометаллургических процессов (ПК-2);
- способность и готовность к исследованиям и разработке технологий получения металлов и сплавов, повышения их качества, комплексного извлечения попутных элементов (ПК-3);
- способность и готовность к исследованиям и разработке технологий получения металлов и сплавов, повышения их качества, комплексного извлечения попутных элементов (ПК-4).

В результате изучения дисциплины обучающийся должен:

Знать:

- механизм электрохимических процессов в расплавах и растворах, методы его изучения, аппаратурное оформление и особенности электрометаллургических и электрогидрометаллургических процессов важнейших металлов.

Уметь:

- рассчитывать основные параметры и эффективность электрохимического процесса.

Владеть:

- основами теоретической электрохимии, неорганической и физической химии, а также химической технологии.

5.Перечень дисциплин и их разделов, усвоение которых необходимо обучающимся для изучения данной дисциплины.

Программа курса предусматривает взаимосвязь предшествующих и последующих дисциплин в соответствии с учебным планом направления подготовки. Данная дисциплина опирается на знания, полученные при изучении дисциплин: физическая химия, электрохимия, общая и неорганическая химия, физика, математика, органическая химия, основы аналитической химии.

<u>Общая и неорганическая химия</u> - периодический закон Д.И. Менделеева, строение вещества, номенклатура соединений, химия элементов, растворы, расплавы, электрохимия растворов и расплавов.

Физика - электричество, термодинамика.

Высшая математика - математическая статистика, интегралы, дифференциалы.

Органическая химия - номенклатура, строение и свойства органических соединений

6. Содержание учебной дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов.

Таблица 1

$N_{\underline{0}}$	Наименование тем	Количество часов, выделяемых на			Компетенции		
$\Pi \backslash \Pi$	(модулей) дисциплины и		виды	учебной	й подгот	говки	раздела
	их содержание						(модуля)
		Лек*	Лек* Пр* СРС* КСР* Контроль*				
1	2	3	4	5	6	7	8
1.	Классификация металлов.	2		5			ОПК-5, ПК-
	Руды и минералы.						1,
	Техническое применение.						ПК-2, ПК-3,
	Пиро- и						ПК-4
	гидрометаллургические						

	методы обогащения и			
	концентрирования	2		OHK 1 HK
2.	Электрохимия растворов.	2		ОПК-1, ПК-
	Ряды напряжений.			1,
	Электрорафинирование и			ПК-2,
	электроэкстракция.			ПК-3, ПК-4
	Основные законы.		_	
3.	Катодные процессы.	2	5	ОПК-1, ПК-
	Электрокристаллизация			1,
	металлов. Совместный			ПК-2,
	разряд катионов металлов			ПК-3, ПК-4
	с различными			
	стандартными			
	потенциалами; катионов			
	металлов и водорода.			
	Специфические случаи			
	совместного разряда и			
	загрязнения катодно			
	осаждаемых металлов			
	примесями			
	неионизированных			
	веществ.			
4.	Анодные процессы:	2	6	ОПК-1, ПК-
	Анодное растворение			1,
	сплавов и металлов,			ПК-2,
	образующих ионы разных			ПК-3, ПК-4
	степеней окисления.			
	Нерастворимые аноды.			OFFIC 1 FIG
5.	Электрохимическая и	2	6	ОПК-1, ПК-
	диффузионная кинетика.			1,
				ПК-2,
				ПК-3, ПК-4
6.	Основные процессы		6	ОПК-1, ПК-
	пирометаллургической			1,
	технологии черновой			ПК-2,
	меди (обогащение,			ПК-3, ПК-4
	флотация,			
	десульфуризация, отжиг,			
7.	конвертирование). Электрорафинирование		6	ОПК-1, ПК-
'.	меди. Анодные процессы.			1,
	Поведение примесных			ПК-2,
	металлов. Образование			ПК-2,
	шламов. Пассивация			11113, 11114
	анодов.			
	штодов.			
8.	Электрорафинирование		6	ОПК-1, ПК-
	меди: Катодные			1,
	процессы. Подавление			ПК-2, ПК-3,
	побочных процессов.			ПК-4
	Технические показатели			
	электролиза.			
	, .			_ i

9.	Диафрагмы и		6	ОПК-1, ПК-
	ионообменные мембраны			1, ПК-2, ПК-3, ПК-4
10.	Корректировка медного электролита. Использование электромембранных технологий для регенерации отработанных электролитов.	2	6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
11.	Отличительные особенности расплавленных солей от водных растворов	2	6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
12.	Плавкость индивидуальных солевых систем	2	6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
13.	Простейшие диаграммы плавкости двойных солевых систем		6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
14.	Простейшие диаграммы плавкости тройных солевых систем		6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
15.	Общая характеристика физико-химического анализа. Методы определения плотности расплавленных солей.		6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
16.	Плотность (мольный объем) индивидуальных и бинарных солевых расплавов.		6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
17	Методы определения вязкости расплавленных солей.		5	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
18	Вязкость индивидуальных и бинарных солевых расплавов.	2	5	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
19	Явление смачивания в расплавленных солях.	2	6	ОПК-1, ПК- 1, ПК-2, ПК-3, ПК-4
20	Методы определения давления насыщенного	2	6	ОПК-1, ПК- 1,

	пара расплавленных солей.			ПК-2, ПК-3, ПК-4
21	Давление насыщенного	2	6	ОПК-1, ПК-
	пара индивидуальных и	_		1,
	бинарных солевых			ПК-2, ПК-3,
	расплавов.			ПК-4
22	Электропроводность	2	6	ОПК-1, ПК-
	расплавленных солей.			1,
	Общие понятия.			ПК-2, ПК-3,
				ПК-4
23	Электропроводность		6	ОПК-1, ПК-
	индивидуальных и			1,
	бинарных солевых			ПК-2, ПК-3,
	расплавов.			ПК-4
24	Числа переноса ионов		6	ОПК-1, ПК-
				1,
				ПК-2, ПК-3,
25				ПК-4
25	Электрохимические		6	ОПК-1, ПК-
	методы исследования			1, ПК-2, ПК-3,
	термодинамических			ПК-2, ПК-3, ПК-4
	свойств расплавленных солей			11K-4
26	Электроды сравнения в		6	ОПК-1, ПК-
20	солевых расплавах			1,
	Corresponding paternia park			ПК-2, ПК-3,
				ПК-4
27	Особенности		6	ОПК-1, ПК-
	электрохимической			1,
	кинетики в расплавах			ПК-2, ПК-3,
				ПК-4
28	Методы исследования		6	ОПК-1, ПК-
	электрохимической			1,
	кинетики в			ПК-2, ПК-3,
	расплавленных солях			ПК-4
	(вольтамперометрия,			
	хронопотенциометрия.			
29	хроноамперометрия,		6	ОПК-1, ПК-
29	Теоретические основы методов коррозионных		0	1,
	испытаний			ПК-2, ПК-3,
	испытании			ПК-2, ПК-3,
30	Методы оценки коррозии	+	6	ОПК-1, ПК-
	плетоды оценки коррозии			1,
				ПК-2, ПК-3,
				ПК-4
31	Испытания,		6	ОПК-1, ПК-
	имитирующие			1,
	атмосферные условия			ПК-2, ПК-3,
				ПК-4
32	Методы испытаний для		6	ОПК-1, ПК-
	выявления склонности			1,

	материалов к локальной коррозии					ПК-2, ПК-3, ПК-4
33	Контроль самостоятельной работы			4		
34	Контроль (зачет)				4	
	Всего часов:	20	124	4	4	

^{*}Примечание. Обозначения: Лек. – лекции, Пр – практическая работа, СРС – самостоятельная работа обучающегося, КСР – контроль самостоятельной работы, контроль - зачет.

7. Формы контроля знаний, их содержание

Таблица 2

3.0			G 1
№	1	Тема по	Срок
п/п	Наименование и содержание форм контроля	табл.1	выполнения
1	Контроль самостоятельной работы в форме	1-16	2 семестр
	собеседования, ответов на поставленные вопросы в		
	соответствии с перечнем вопросов и программой		
	дисциплины		
2	Зачет. В соответствии с перечнем вопросов и	1-16	2 семестр
	программой дисциплины		
3	Контроль самостоятельной работы в форме	18-32	3 семестр
	собеседования, ответов на поставленные вопросы в		
	соответствии с перечнем вопросов и программой		
	дисциплины		
4	Зачет. В соответствии с перечнем вопросов и	18-32	3 семестр
	программой дисциплины		
	l .		

8. Учебно-методическое и информационное обеспечение дисциплины

а) Карта обеспеченности учебной дисциплины литературой

Примечание. Основная литература для естественно-научных дисциплин не должна быть старше 10 лет.

Таблица 3

No	Название учебников,	Авторы		Год	Фактичес	кое наличие
п\п	учебных пособий и	(под ред.)	Издательство	изда-	Библиотека	Электронные
11/11	других источников	(под ред.)		ния	Биолиотска	ресурсы
1	2	3	4	5	6	
		Основа	ная литература			
1.	Коррозия и защита от коррозии.	Семенова И.В., Флорианович Г.М.,. Хорошилов А.В	М.: ФИЗМАТЛИТ	2006	4	
2.	Физико-химические основы электрохимии.	Лукомский Ю.Я., Гамбург Ю.Д	Долгопрудный: Изд. Дом Интеллект	2008	8	

3.	Наноматериалы, наноструктуры, нанотехнологии.	Гусев А.И.	М.: ФИЗМАТЛИТ	2009	8	
4.	Электрохимия	Дамаскин Б. Б., Петрий О. А., Цирлина Г. А.	Химия, Колос	2008	6	
5.	Учебное пособие. «Физико-химические основы металлургических процессов» 152 с.	Седнева Т.А.	Мурманск: Изд- во МГТУ	2009	89	
		Дополнит	ельная литератур	a		
6.	Физическая химия	Стромберг А.Г., Семченко Д.П.	М.: Высшая школа	2001	10	
7.	Электролиз расплавленных солей.	Баймаков Ю.В., Ветюков М.М.	М.: Металлургия	1966	1	ЭБС
8.	Электролиз в гидрометаллургии.	Баймаков Ю.В., Журин А.И.,	М.: Металлургия.	1977	1	ЭБС
9.	Электрохимия ионных расплавов.	Делимарский Ю.К.	М.: Металлургия	1978.	1	ЭБС
10.	Термодинамика расплавленных металлических и солевых систем	Морачевский А.Г., Юркинский В.П.	М.: Металлургия	1987	1	ЭБС
11.	Физико-химические основы получения тугоплавких свертвердых материалов	Кислый П.С.	Киев: Наукова думка,	1986.	1	ЭБС
12.	Диаграммы состояния двойных и тройных систем,	Захаров А.М.	М.: Металлургия	1990	1	ЭБС
13.	Строение и свойства металлических расплавов	Еланский Г.Н.	М.: Металлургия	1991.	1	
14.	Прикладная электрохимия	Федотьев Н.П., Алабышев А.Ф.	СПб.: Госхимиздат	1962	1	
15.	Электролитическое получение магния.	Щеголев В.И., Лебедев О.А.	Руда и металлы	2002	2	
16.	Электрохимические методы исследования в термодинамике металлических систем.	Морачевский А.Г., Воронин Г.Ф., Гейдерих В.А., Куценок И.Б	М.: ИКЦ Академкнига	2003	8	
17.	Сборник задач по электрохимии	Коллектв авторов, Анисимова Л. С., Пикула Н. А.	М.: Высшая школа	2003	10	

18.	Металлургия золота и серебра	Стрижко Л.С.	М.: Мисис,	2001.	1	
19.	Металлургия благородных металлов	Масленицкий И.Н., Чугаев Л.В., Борбат В.Ф.		1987.	1	

б) программное обеспечение:

Microsoft Office 2003/2007 CorelDRAW Graphics Suite X5 Classroom MathCAD Education - University Edition

в) базы данных, информационно-справочные и поисковые системы

Научная электронная библиотека, http://elibrary.ru/defaultx.asp
электронные ресурсы Springer, http://www.springer.com/gp/
электронные ресурсы Wiley, http://onlinelibrary.wiley.com
ЭБС Издательства «Лань», http://e.lanbook.com/;

ЭБС IQlibhttp://www.iqlib.ru/,

ЭБС «Национальный цифровой ресурс "Руконт" http://www.rucont.ru/

9. Материально-техническое обеспечение дисциплины

Оборудование на базе лабораторий института.

Лист, изменений, вносимых в рабочую программу

1.	В раоочую программу вносятся следующие изменения и дополнения:
ИΧΊ	Дополнения и изменения внесены и одобрены на заседании Ученого совета ГРЭМС КНЦ РАН от «»г., протокол №
	Утверждаю, директор ИХТРЭМС КНЦ РАН
	« » Г.